锻造用中频感应加热设备几种电路形式的能耗比较
目前国内使用的锻造用中频感应加热设备主要有三种电路形式,其中使用量最大的是上世纪80年代初发展起来的由可控硅变频的中频感应设备,主体电路如下图: (图一)
整流部分由6只可控硅完成将三相交流电变成直流,同时担任设备的功率调节。此整流电路的缺点是:功率调节是通过调节可控硅的导通角实现的,导通角减小电网的功率因数就会降低,用户不得不另配功率因数补偿柜,增加新的投入,(如果用户不另配功率因数补偿柜,将会导致用户配电室的功率因数补偿柜电容损坏或供电变压器发热)。整流后的直流滤波由大的直流电抗器完成,此部分带来1%~3%的损耗,变频电路由4只可控硅完成,变频电路的损耗大约为5%。受可控硅关断的制约,变频回路的功率因数只能达到0.8~0.85。输出电路是由感应线圈(炉体)和补偿电容组成的并联谐振电路。受可控硅耐压的限制,中频电压≤750V,因此,感应线圈上的电流通常是直流电流的5~10倍,(5~10是振荡回路的品质因数俗称Q值,并联谐振电路的特征是振荡电流是直流电流的Q倍)所以并联谐振输出电路通常有较大的损耗,约占整机功率的25%-30%。因此可控硅变频中频感应加热设备的整机效率大约只有60%-70%左右。 上世纪90年代初国际上诞生了一种新的功率器件IGBT,它具有功率大、开关损耗低、工作频率高(可达100Khz),由IGBT变频的中频感应加热设备有两种线路:一种为并联谐振;另一种为串联谐振。 并联谐振的主电路如下图: (图二)
IGBT变频的中频感应加热设备的另外一种线路为串联谐振,主电路如下图: (图三)
整流部分由6只二极管担任,直接整流不斩波,不会导致电网的功率因数下降。串联谐振电路去掉了庞大而笨重的滤波电抗器,减小了损耗,滤波由电容C1担任。可控硅T1在这里只作开关用,当电容C1上的电被充到一定电压后即开通,变频电路由4只IGBT构成,IGBT的导通损耗与可控硅相当,而开关损耗低于可控硅的开关损耗,因此变频电流的损耗大约在3%。该电路的功率调节有两种方式:1、改变变频电路的工作频率(变频),2、改变IGBT的导通时间(调宽)。输出电路的特征是感应线圈与补偿电容串联构成串联谐振电路。此电路的特征是流过IGBT的电流与流过感应线圈及补偿电容的电流相等,而感应线圈上的电压是整流后直流电压的3~10倍,(串联谐振电路的特征是振荡线圈的电压是直流电压的Q倍)。感应线圈上的功率P=感应线圈上的电压(V)×流过感应线圈的电流(I)。现在我们来比较并联谐振与串联谐振,感应线圈的损耗。假设感应线圈上的功率都是P。 并联谐振:P=V并×I并;P=750×I并; I并= P/750; 串联谐振:P=V串×I串;P=1500×I串; I串= P/1500; (V串 以最小3倍直流电压计算3×500=1500) 则I串=;我们知道感应线圈的损耗只与线圈的电阻相关,假设线圈的电阻为R,则损耗功率为: P=I2R;P并=I2并R ;P串=I2串R= = 因此可见在相同的功率与相同的感应线圈的情况下,串联谐振感应线圈的损耗最多只有并联谐振感应线圈的。因此,串联谐振输出电路的损耗约占整机功率的5%-10%,所以串联谐振变频的中频感应加热设备的整机效率为80%-90%。 在串联谐振电路中,感应线圈上中频电压的高低与变频功率器件的耐压无关,只要感应线圈的绝缘允许,提高中频电压就可以进一步降低感应线圈的损耗,整机效率就会进一步提高,这和输电为什么要用高压输送是一个道理。 |